An abstract existence result for generalised Hughes' model From conjoint works with B. Andreianov

T. GIRARD

Institut Denis Poisson, Université de Tours

January 18, 2023

LATEL LEEK LATEL LATEL

Outline

1 [Macroscopic model for pedestrian flow](#page-2-0)

- The Hughes' model
- **[Related models](#page-9-0)**
- What's known?
- 2 [Notion of solution when interface is fixed](#page-15-0)
	- **[No interface condition](#page-19-0)**
	- [The operator point of view](#page-20-0)
- **3** [The main result](#page-23-0)
	- **[The fixed-point Theorem](#page-23-0)**
	- \blacksquare [Ideas of the proof](#page-25-0)
- 4 [Three applications](#page-27-0)
	- **[The affine cost case](#page-28-0)**
	- [The issue with a general](#page-31-0) \mathcal{C}^1 cost
- 5 [An extension : constrained evacuation at exits](#page-34-0)

KORKA BRADE KORA

6 [Further prospects](#page-41-0)

[Macroscopic model for pedestrian flow](#page-2-0)

[The Hughes'model](#page-2-0)

We want to study the macroscopic quantity that is the crowd density:

[Macroscopic model for pedestrian flow](#page-2-0)

 L The Hughes' model

The domain is a room D. At $t \leq 0$, the pedestrians are distributed as an initial density ρ_0 . Starting at $t = 0$, the pedestrians want to leave D through the exits E .

[Macroscopic model for pedestrian flow](#page-2-0)

[The Hughes'model](#page-2-0)

We consider the following eikonal equation for the potential:

$$
\begin{cases}\n|\nabla \phi| = \frac{1}{g(\rho)v(\rho)} \\
\phi(t,x) = 0 & \text{if } x \in E \\
\nabla \phi(t,x) \cdot \nu(x) = 0 & \text{if } x \in \partial D \setminus E.\n\end{cases}
$$

Here ν is the normal unit vector. The decreasing g function takes into account the disconfort for pedestrian to stay in high density region.

[Macroscopic model for pedestrian flow](#page-2-0)

LThe Hughes' model

:

The Lighthill - Whitham and Richards (LWR) model for traffic flow

$$
\begin{cases} \rho_t + [\rho v(\rho)]_x = 0 \\ \rho(0, \cdot) = \rho_0(\cdot), \end{cases}
$$

with $v(\rho) = 1 - \rho$. We set $f(\rho) = \rho(1-\rho)$, f is concave.

• M. J. Lighthill and G. B. Whitham, On kinematic waves. ii. a theory of traffic flow on long crowded roads, (1955).

- P. I. Richards, Shock waves on the highway, (1956).
- M. Di Francesco and M. Rosini, Rigorous derivation of nonlinear scalar conservation laws from follow-the-leader type models via many particle limit, 2015.

[Macroscopic model for pedestrian flow](#page-2-0)

 \Box The Hughes' model

Consequently, the density of pedestrian will move, satisfying a LWR one-dimensional conservation law equation, in the direction of the descending gradient i.e.

$$
\begin{cases}\n\rho_t + \operatorname{div}\left[\frac{-\nabla \phi}{|\nabla \phi|} \rho v(\rho)\right] = 0 \\
\rho(0, x) = \rho_0(x) \\
\rho(t, x \in E) = 0\n\end{cases}
$$

This corresponds to a discontinuous flux conservation law. This boundary condition is equivalent to open-end exit condition.

[Macroscopic model for pedestrian flow](#page-2-0)

[The Hughes'model](#page-2-0)

The original multi-D Hughes' model:

$$
\int \rho_t + \operatorname{div} \left[\frac{-\nabla \phi}{|\nabla \phi|} \rho v(\rho) \right] = 0 \tag{2a}
$$

$$
|\nabla \phi| = \frac{1}{g(\rho)v(\rho)}
$$
 (2b)

$$
\phi(t, x \in E) = 0 \tag{2c}
$$

K ロ X K 레 X K 회 X X 회 X 및 X X X X X 전

$$
\begin{cases}\n\phi(t, x \in E) = 0 & (2c) \\
\nabla \phi(t, x \in \partial D \setminus E) \cdot \nu(x) = 0. & (2d)\n\end{cases}
$$

Introduced in :

R. L. Hughes, A continuum theory for the flow of pedestrians, Transportation Research Part B-methodological, 36 (2002), pp. 507–535.

[Macroscopic model for pedestrian flow](#page-2-0)

 L The Hughes' model

In one dimension, think of a corridor:

$$
\begin{cases}\n\rho_t + \left[\text{sign}(-\partial_x \phi)\rho v(\rho)\right]_x = 0 \\
|\partial_x \phi| = \frac{1}{g(\rho)v(\rho)} \\
\phi(t, x = \pm 1) = 0.\n\end{cases}
$$

K ロ ▶ K 個 ▶ K 할 > K 할 > 1 할 > 1 이익어

[Macroscopic model for pedestrian flow](#page-2-0)

 $\overline{}$ [Related models](#page-9-0)

We can try to reformulate the problem in terms of control trajectories:

$$
\begin{cases}\n\dot{y}_x(t) = \alpha \in \{\pm 1\} \\
y_x(0) = x.\n\end{cases}
$$

With

$$
\mathcal{T} := \inf \left\{ t \in \mathbb{R}^+ \text{ s.t. } y_x(t) \in \{\pm 1\} \right\},\
$$

we write the following value function :

$$
\phi(t,x):=\inf_\alpha \left\{ \int_0^T c(\rho(t,y_x(s))) \,\mathrm{d} s \right\}
$$

where $c(\rho)=\frac{1}{g(\rho)\mathsf{v}(\rho)}.$ $\phi(t, x) := \min \Big\{ \int_{}^1$ $c(\rho(t,y))$ dy, \int_0^x $c(\rho(t, y)) dy$ x −1 000

- [Macroscopic model for pedestrian flow](#page-2-0)
	- L [Related models](#page-9-0)

The turning curve approach

$$
\begin{cases}\n\rho_t + \left[\text{sign}(x - \xi(t))\rho v(\rho)\right]_x = 0 & \text{(5a)} \\
\int_{-1}^{\xi(t)} c(\rho(t, x)) dx = \int_{\xi(t)}^1 c(\rho(t, x)) dx, & \text{(5b)}\n\end{cases}
$$

K ロ ▶ K 個 ▶ K 할 > K 할 > 1 할 > 1 이익어

with c called the cost function.

[Macroscopic model for pedestrian flow](#page-2-0)

 $\overline{}$ [Related models](#page-9-0)

If $c(\rho) = \frac{1}{g(\rho) v(\rho)}$ the Hughes' model [\(2\)](#page-7-0) and [\(5\)](#page-10-0) are equivalent.

The proof can be found in: N. El-Khatib, P. Goatin, and M. D. Rosini, On entropy weak solutions of hughes model for pedestrian motion, Zeitschrift für angewandte Mathematik und Physik, 64 (2013), pp. 223–251.

KORKAR KERKER DRA

[Macroscopic model for pedestrian flow](#page-2-0)

[Related models](#page-9-0)

We want to solve the one-dimensionnal problem:

$$
\begin{cases}\n\rho_t + \left[\operatorname{sign}(x - \xi(t))\rho v(\rho)\right]_x = 0 \\
\int_{-1}^{\xi(t)} c(\rho(t, x)) dx = \int_{\xi(t)}^1 c(\rho(t, x)) dx.\n\end{cases}
$$

with a general c satisfying:

$$
\begin{cases}\n c \in C^0([0,1]), \\
 \forall \rho \in [0,1], c(\rho) \ge 1, \\
 c \text{ is increasing on } [0,1].\n\end{cases}
$$

K ロ ▶ K 個 ▶ K 할 > K 할 > 1 할 > 1 이익어

[Macroscopic model for pedestrian flow](#page-2-0)

[What's known ?](#page-13-0)

- Well-posedness for the regularized Hughes' model: M. Di Francesco, P. A. Markowich, J.-F. Pietschmann, and M.-T. Wolfram, On the hughes' model for pedestrian flow: The one-dimensional case
- Well-posedness for the discontinuous-flux conservation law: N. El-Khatib, P. Goatin, and M. D. Rosini, On entropy weak solutions of hughes model for pedestrian motion
- Existence result if $\rho_{\vert {\{x=\xi(t)\}}} = 0$: D. Amadori, P. Goatin, and M. D. Rosini, Existence results for hughes' model for pedestrian flows
- \blacksquare Existence result for the affine cost case: B. Andreianov, M. D. Rosini, and G. Stivaletta, On existence, stability and many-particle approximation of solutions of 1D Hughes model with linear costs.

[Macroscopic model for pedestrian flow](#page-2-0)

[What's known ?](#page-13-0)

Coming soon : a chapter in Crowd dynamics volume 4 edited by Gibelli and Bellomo,

The mathematical theory of Hughes' model: a survey of results Compiling the works of : D. Amadori, B. Andreianov, M. Di Francesco, S. Fagioli, T. Girard, P. Goatin, P. Markowich, J.-F. Pietschmann, M.D. Rosini, G. Russo, G. Stivaletta and M.T. Wolfram

[Notion of solution when interface is fixed](#page-15-0)

Fix $\xi \in W^{1,\infty}$. We first discuss the notion of solution for :

$$
\rho_t + [\text{sign}(x-\xi(t))f(\rho)]_x = 0.
$$

It is a one-dimensional conservation law with discontinuous flux (in $x = \xi(t)$).

K ロ X K 레 X K 회 X X 회 X 및 X X X X X 전

L [Notion of solution when interface is fixed](#page-15-0)

Definition (Classical entropy solution)

$$
\rho \in L^{\infty} \text{ is an entropy solution to } \rho_t + f(\rho)_x = 0 \text{ if}
$$

$$
\rho \text{ is a weak solution i.e for all } \phi \in C_c^{\infty}, \phi \ge 0:
$$

$$
\iint_{(0,T)\times\mathbb{R}} \rho\phi_t + f(\rho)\phi_x \, \mathrm{d}t \, \mathrm{d}x = 0
$$

 ρ satisfies the entropy inequalities, for all ϕ , all $k \in \mathbb{R}$:

$$
\iint_{(0,T)\times\mathbb{R}} |\rho - k| \phi_t + q_f(\rho, k) \phi_x \, \mathrm{d}t \, \mathrm{d}x + \int_{\mathbb{R}} |\rho_0(x) - k| \phi(0, x) \, \mathrm{d}x \ge 0
$$

where $q_f(p_1, p_2) := \text{sign}(p_1 - p_2) [f(p_1) - f(p_2)]$

4 ロ > 4 個 > 4 ミ > 4 ミ > 三 ミ - 9 Q Q

L[Notion of solution when interface is fixed](#page-15-0)

Definition (N. El-Khatib, P. Goatin, and M. D. Rosini)

 $\rho \in L^{\infty}$ is an entropy solution to $\rho_t + [\text{sign}(x - \xi(t)) \rho v(\rho)]_{\vee} = 0$ if ρ is a weak solution and satisfies the following entropy condition for all $k \in \mathbb{R}$:

$$
\iint_{(0,T)\times\mathbb{R}} |\rho - k| \phi_t + q_F(\rho, k) \phi_x \, dt \, dx
$$

$$
+ \int_{\mathbb{R}} |\rho_0(x) - k| \phi(0, x) \, dx
$$

$$
+ 2 \int_0^T f(k) \phi(t, \xi(t)) \, dt \ge 0
$$

KORKA SERKER STRACK

where $q_F(p_1, p_2) := \text{sign}(p_1 - p_2) [F(p_1) - F(p_2)]$ and $F(t, x, p) = sign(x - \xi(t))p(1 - p)$

[Notion of solution when interface is fixed](#page-15-0)

Definition (Entropy solution without interface condition)

 $\rho \in L^{\infty}$ is an entropy solution to $\rho_t + [\text{sign}(x - \xi(t))f(\rho)]_x = 0$ if ρ is a weak solution and satisfies the following entropy condition for all $k \in \mathbb{R}$,

For all
$$
\phi
$$
 supported in $\{x < \xi(t)\}$:

\n
$$
\iint_{\{x < \xi(t)\}} |\rho - k| \phi_t + q_{-f}(\rho, k) \phi_x \, \mathrm{d}t \, \mathrm{d}x + \int_{\mathbb{R}} |\rho_0(x) - k| \phi(0, x) \, \mathrm{d}x \geq 0
$$

for all ϕ supported in $\{x > \xi(t)\}$: \int $\{x>\xi(t)\}\$ $|\rho - k| \phi_t + q_f(\rho, k) \phi_x \, \mathrm{d}t \, \mathrm{d}x$ $+$ | **R** $|\rho_0(x)-k|\phi(0,x)\,\mathrm{d}x\geq 0$

L[Notion of solution when interface is fixed](#page-15-0)

L[No interface condition](#page-19-0)

A word about classical and non-classical shocks...

[Notion of solution when interface is fixed](#page-15-0)

 $\overline{}$ [The operator point of view](#page-20-0)

Theorem (Wellposedness of the discontinuous conservation law)

Let ρ_0 is $L^1(\mathbb{R})$. Let $\xi \in W^{1,\infty}((0,\,T))$. There exists a unique $\rho \in L^1((0,\,T) \times \mathbb{R})$ solution to $\rho_t + [\mathsf{sign}(x-\xi(t)) \rho \nu(\rho)]_{\chi} = 0$ with initial datum ρ_0 in the sense of the previous definition.

Corollary

Fix $\rho_0 \in L^1(\mathbb{R})$. Then we can define the (non-linear) operator

$$
\mathcal{S}_0: \left\{ \begin{matrix} W^{1,\infty}((0,\,T)) \longrightarrow L^1((0,\,T) \times \mathbb{R}) \\ \xi \mapsto \rho. \end{matrix} \right.
$$

KORKAR KERKER DRA

This operator is well-defined and monovaluated.

[Notion of solution when interface is fixed](#page-15-0)

[The operator point of view](#page-20-0)

Generalized Hughes' model :

$$
\begin{cases} \rho_t + [\text{sign}(x - \xi(t))f(\rho)]_x = 0 \\ \rho(0, x) = \rho_0(x) \\ \xi = \mathcal{I}(\rho) \end{cases}
$$

In particular, the turning curve model is a generalised Hughes' model with $\mathcal I$ that maps ρ to ξ the solution to

$$
\int_{-1}^{\xi(t)} c(\rho(t,x)) dx = \int_{\xi(t)}^1 c(\rho(t,x)) dx
$$

[Notion of solution when interface is fixed](#page-15-0)

 \Box [The operator point of view](#page-20-0)

Definition (Solution to generalized Hughes' model)

Consider $\mathcal{I}:L^1((0,\mathcal{T})\times\mathbb{R})\longrightarrow \mathcal{C}^0.$ We say that (ρ,ξ) is a solution to the generalized Hughes' model if

- ρ is a solution in the sense of the definition without interface condition
- $\xi = \mathcal{I}(\rho)$ in $\mathcal{C}^0([0, T])$

Saying (ρ, ξ) is a solution to the generalised Hughes' model is equivalent to say that $\rho = \mathcal{S}_0 \circ \mathcal{I}(\rho)$ i.e. ρ is a fixed point of $\mathcal{S}_0 \circ \mathcal{I}$.

KORKAR KERKER DRA

 $-$ [The main result](#page-23-0)

L[The fixed-point Theorem](#page-23-0)

Assumptions :

Let $\rho_0 \in L^1(\mathbb{R})$.

Let B a convex closed bounded subset of $L^1((0, T) \times \mathbb{R})$

■ The operator

$$
\mathcal{I}:(B,||\cdot||_{L^1((0,T)\times\mathbb{R})})\longrightarrow (C^0([0,T],\mathbb{R}),||\cdot||_{\infty})
$$

is continuous.

Assume that f verifies [\(non-degen\)](#page-23-1):

$$
\forall b \in \mathbb{R}, \text{ meas}\{x \in [-||\rho||_{\infty}; |\rho||_{\infty}] \text{ s.t. } f'(x) = b\} = 0
$$

(non-degen)

 $\overline{-\Gamma}$ he main result

 L [The fixed-point Theorem](#page-23-0)

Corollary (Main result)

If there exists $r > 0$ such that:

- $\mathcal{I}(B) \subset B_{W^{1,\infty}}(0,r)$
- $\blacksquare \forall \xi \in B_{W^{1,\infty}}(0,r)$, the unique admissible solution to

$$
\rho_t + \left[\text{sign}(x - \xi(t))f(\rho)\right]_x = 0
$$

KORKA BRADE KORA

is in B.

then there exists (ρ, ξ) a solution to the generalised Hughes' model.

 L [The main result](#page-23-0)

 L [Ideas of the proof](#page-25-0)

The proof scheme:

 $\overline{}$ [The main result](#page-23-0)

L[Ideas of the proof](#page-25-0)

Theorem

Let $\rho_0 \in L^1(\mathbb{R})$. If f satisfies [\(non-degen\)](#page-23-1), then the solver operator $\mathcal{S}_0: (W^{1,\infty}((0,\,T),\|\cdot\|_\infty) \longrightarrow (L^1((0,\,T)\times\mathbb{R}),\|\cdot\|_{L^1((0,\,T)\times\mathbb{R})})$

is continuous.

This proof relies on the Averaging Compactness Lemma from B. Perthame' book : Kinetic formulation for hyperbolic conservation law.

KORKA SERKER STRACK

 \Box [Three applications](#page-27-0)

In order to get existence to a solution to a generalised Hughes' model, we have to find B a subset of $L^1((0,\,T)\times\mathbb{R})$ such that :

- *B* is a convex closed bounded subset of $L^1((0, T) \times \mathbb{R})$
- The operator

$$
\mathcal{I}:(B,||\cdot||_{L^1((0,T)\times\mathbb{R})})\longrightarrow (C^0([0,T],\mathbb{R}),||\cdot||_{\infty})
$$

is continuous.

- $\mathcal{I}(B) \subset B_{W^{1,\infty}}(0,r)$
- $\blacksquare \forall \xi \in B_{W^{1,\infty}}(0,r)$, the unique admissible solution to

$$
\rho_t + \left[\text{sign}(x - \xi(t))f(\rho)\right]_x = 0
$$

KORKA BRADE KORA

is in B.

 L [Three applications](#page-27-0)

 L [The affine cost case](#page-28-0)

For the turning curve problem :

$$
\begin{cases}\n\rho_t + \left[\operatorname{sign}(x - \xi(t))\rho v(\rho)\right]_x = 0 \\
\int_{-1}^{\xi(t)} c(\rho(t, x)) dx = \int_{\xi(t)}^1 c(\rho(t, x)) dx.\n\end{cases}
$$

KID KORK KERKER E 1990

with $c(\rho) = 1 + \alpha \rho$, $\alpha > 0$.

L[Three applications](#page-27-0)

 L [The affine cost case](#page-28-0)

There exists $C > 0$ such that any $\rho \in \mathcal{S}_0(W^{1,\infty}((0,T)))$ verifies:

$$
\forall a, b \in \mathbb{R}, \forall s, t \in [0, T], \left| \int_a^b \rho(t, x) - \rho(s, x) dx \right| \leq C |t - s|. \tag{8}
$$

We call this property the weak continuity of ρ .

Then we construct:

$$
B_1 = \left\{ \rho \in B_{L^1}(0, T || \rho_0||_{L^1}) \text{ s.t. } 0 \leq \rho \leq 1 \text{ and } \rho \text{ verifies (8)} \right\}.
$$

KORKA BRADE KORA

This set satisfies all the required properties in order to apply our main result.

 L [Three applications](#page-27-0)

 L [The affine cost case](#page-28-0)

Ideas of the proof :

Set
$$
\xi = \min(\xi(t), \xi(s))
$$
 and $\bar{\xi} = \max(\xi(t), \xi(s))$.
\n
$$
2|\xi(t) - \xi(s)|
$$
\n
$$
\leq \left| \int_{-1}^{\xi} c(\rho(t, x)) - c(\rho(s, x)) dx - \int_{\bar{\xi}}^{1} c(\rho(t, x)) - c(\rho(s, x)) dx \right|
$$
\n
$$
\leq \alpha \left| \int_{-1}^{\xi} \rho(t, x) - \rho(s, x) dx \right| + \alpha \left| \int_{\bar{\xi}}^{1} \rho(t, x) - \rho(s, x) dx \right|
$$
\n
$$
\leq 2\alpha C|t - s|
$$

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ | 할 | ⊙Q @

[Three applications](#page-27-0)

[The issue with a general](#page-31-0) $\mathcal{C}^{\mathbf{1}}$ cost

However, we didn't succeed in proving that $\mathcal{I}(B_1) \subset W^{1,\infty}$ in the case of a general \mathcal{C}^1 cost satisfying:

$$
\begin{cases}\n c \in C^0([0,1]), \\
 \forall \rho \in [0,1], c(\rho) \ge 1, \\
 c \text{ is increasing on } [0,1].\n\end{cases}
$$

$$
2 | \xi(t) - \xi(s) |
$$

\n
$$
\leq \left(\frac{\bar{\alpha} + \alpha}{2} \right) \left| \int_{-1}^{\xi} \rho(t, x) - \rho(s, x) dx - \int_{\bar{\xi}}^{1} \rho(t, x) - \rho(s, x) dx \right|
$$

\n
$$
+ \left(\frac{\bar{\alpha} - \alpha}{2} \right) \int_{-1}^{1} |\rho(t, x) - \rho(s, x)| dx
$$

K ロ X K 레 X K 회 X X 회 X 및 X X X X X 전

[Three applications](#page-27-0)

[The issue with a general](#page-31-0) $\mathcal{C}^{\mathbf{1}}$ cost

But, if we set:

$$
\mathcal{R}[\rho(\cdot,x)](t) := \delta \int_{-\infty}^{t} \rho(s,x) e^{-\delta(t-s)} \,\mathrm{d}s,\tag{9}
$$

K ロ X K 레 X K 회 X X 회 X 및 X X X X X 전

we can use B_1 to prove the existence of a solution to:

$$
\left\{\begin{aligned}\n\rho_t + \left[\text{sign}(x - \xi(t))\rho v(\rho)\right]_x &= 0 \\
\int_{-1}^{\xi(t)} c(\mathcal{R}[\rho(\cdot, x)](t))dx &= \int_{\xi(t)}^1 c(\mathcal{R}[\rho(\cdot, x)](t))dx,\n\end{aligned}\right.
$$

in the \mathcal{C}^1 cost case.

L[Three applications](#page-27-0) [The issue with a general](#page-31-0) $\mathcal{C}^{\mathbf{1}}$ cost

> With our main result, we can also solve the original turning curve problem with relaxed equilibrium:

$$
\begin{cases} \epsilon \dot{\xi}(t) = \int_{\xi(t)}^1 c(\rho(t,x)) dx - \int_{-1}^{\xi(t)} c(\rho(t,x)) dx \\ \int_{\xi(0)}^1 c(\rho(t,x)) dx - \int_{-1}^{\xi(0)} c(\rho(t,x)) dx = 0. \end{cases}
$$

still with \mathcal{C}^1 cost.

In this case,

$$
B_2 = \{ \rho \in B_{L^1}(0, T || \rho_0 ||_{L^1}) \text{ s.t. } 0 \le \rho \le 1 \}
$$

KORKA BRADE KORA

satisfies all the required conditions.

Fix $\xi \in W^{1,\infty}$ again. We want to consider the following dynamic for ρ :

$$
\begin{cases}\n\rho_t + \left[\operatorname{sign}(x - \xi(t))f(\rho)\right]_x = 0 \\
f(\rho(t, 1)) \le g_1 \left(\int_\alpha^1 w_1(x)\rho(t, x) dx\right) \\
\rho(0, \cdot) = \rho_0(\cdot).\n\end{cases}
$$

K ロ ▶ K 個 ▶ K 할 ▶ K 할 ▶ 이 할 → 이익C*

We call it the constrained exit problem.

Definition (Notion of solution in the constrained case)

$$
Q_1(t):=g_1\left(\int_{[\alpha,1]}w_1(x)\rho(t,x)\,\mathrm{d} x\right)
$$

A weak solution $\rho \in L^1((0,\,T) \times \mathbb{R})$ is a solution if:

For all positive $\phi \in C^{\infty}(\{x > \xi(t)\})$, for all $k \in \mathbb{R}$,

$$
-\iint_{(0,T)\times\mathbb{R}}|\rho-k|\,\phi_t+q(\rho,k)\phi_x\,\mathrm{d}t\,\mathrm{d}x
$$

$$
-2\int_0^T\left[1-\frac{Q_1(t)}{f(\bar{\rho})}\right]f(k)\phi(t,1)\,\mathrm{d}x-\int_{\mathbb{R}}|\rho_0-k|\phi(0,x)\,\mathrm{d}x\leq 0.
$$

 ρ satisfies the classic entropy inequality on $\{x < \xi(t)\}\$ For a.e. $t \geq 0$, $f(\gamma_{L,R}^1 \rho(t)) \leq Q_1(t)$.

Assumptions :

$$
w_1 \in L^{\infty}([\alpha, 1], \mathbb{R}^+) \text{ s.t. } \int_{\alpha}^{1} w_1 = 1 \quad (\mathsf{W})
$$

KORKA BRADE KORA

$$
g_1 \in W^{1,\infty}(\mathbb{R}^+, \,]0, f(\bar{\rho})]) \text{ is non-increasing.} \tag{G0}
$$

From the works:

- R. M. Colombo and P. Goatin, A well posed conservation law with a variable unilateral constraint, J. Differ. Equ., 234 (2007), pp. 654–675.
- B. Andreianov, C. Donadello, U. Razafison, and M. D. Rosini, Riemann problems with non–local point constraints and capacity drop, (2014).

Corollary

Let $\rho_0\in L^1(\mathbb{R}).$ Let $\xi\in W^{1,\infty}((0,\,T),\,]-1,1[).$ There exists a unique solution ρ to the constrained exits problem. The solver operator

 $\mathcal{S}_\mathcal{g} : (W^{1,\infty}((0,\,T),]-1,1[),\|\cdot\|_\infty) \longrightarrow (L^1((0,\,T)\times\mathbb{R}),\|\cdot\|_{L^1})$

that maps any ξ to the unique solution ρ is continuous.

The proof for uniqueness and continuity follows the same ideas as in the non-constrained case.

KORKAR KERKER DRA

Existence of ρ when ξ is fixed : Convergence of a finite volume scheme From the works :

- B. P. Andreianov, C. Donadello, U. Razafison, and M. D. Rosini, Qualitative behaviour and numerical approximation of solutions to conservation laws with non-local point constraints on the flux and modeling of crowd dynamics at the bottlenecks (2015).
- B. Andreianov and A. Sylla, Finite volume approximation and well-posedness of conservation laws with moving interfaces under abstract coupling conditions. Submitted, (2022)
- A. Sylla, A lwr model with constraints at moving interfaces, ESAIM: Mathematical Modelling and Numerical Analysis, 56 (2022)

[An extension : constrained evacuation at exits](#page-34-0)

イロメ イ部メ イ君メ イ君メ 重し 2990

[An extension : constrained evacuation at exits](#page-34-0)

イロメ イ部メ イ君メ イ君メ 2990 重し

 L [Further prospects](#page-41-0)

A splitting algorithm :

$$
\rho_n = \mathcal{FVS}(\xi_n)
$$

\n
$$
\zeta_{n+1} \text{ solution to } \int_{-1}^{\zeta_{n+1}} c(\rho_n) = \int_{\zeta_{n+1}}^1 c(\rho_n)
$$

\n
$$
\xi_{n+1}(s) := \sum_{i=0}^n \mathbb{1}_{\left[i\Delta t, (i+1)\Delta t\right]}(s) \left(\frac{s - i\Delta t}{\Delta t}\zeta_{i+1} + \frac{(i+1)\Delta t - s}{\Delta t}\zeta_i\right)
$$

 ξ is one step in time ahead of ρ .

KID KORK KERKER E 1990

[Further prospects](#page-41-0)

In the 2D case, which is the "physical" one :

$$
\begin{cases}\n\rho_t + \operatorname{div}\left[\frac{-\nabla \phi}{|\nabla \phi|} \rho v(\rho)\right] = 0 \\
|\nabla \phi| = \frac{1}{v(\rho)} \\
\phi(t, x \in E) = 0 \\
\phi(t, x \in \partial \Omega \setminus E) = +\infty.\n\end{cases}
$$

KID KORK KERKER E 1990

Is there a way to construct a turning graph?

 L [Further prospects](#page-41-0)

A Fast Marching Method for the Eikonal equation :

K ロ ▶ K 個 ▶ K 할 > K 할 > 1 할 > 1 이익어

 L [Further prospects](#page-41-0)

Thanks for your attention

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ | 할 | X 9 Q Q