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Heuristics

We call scalar conservation laws (SCL) the first order non-linear
PDEs of the form:

Otp + OxH(p) = 0.

We call Hamilton-Jacobi equations (HJ) the first order non-linear
PDEs of the form:
Oru+ H(Oxu) = 0.

Notice that, if v is smooth enough, we have:

8tu + H(8Xu) =0
then 0x0:u + 0xH(Oxu) =0
then 0:0xu + OxH(0Oxu) = 0.

Then, if we denote p := dxu, we recover the scalar conservation
law above.
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Continuous iscontint Uses of the correspondence eas and open que

Meta-definition of an HJ-SCL correspondence

Definition (HJ-SCL correspondence)

We say that we have an HJ-SCL correspondence between (HJ)
and (SCL) if, for any solution u of

{3tu(t,x) + H (0xu(t,x)) =0 (HJ)

u(0, x) = wo(x),
for any solution p of

Dep(t, x) + B [H(p(t x))] = 0
{ 5(0,%) = po(x), (5¢L)

we have:

/00(') = aXUO(') = Vi, p(t, ) - a><U(tﬂ )
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@ The continuous case
@ Introduction to scalar conservation laws (SCL)
@ Introduction to Hamilton-Jacobi equations (HJ)
@ HJ-SCL correspondence

© The discontinuous case
@ Discontinuous scalar conservation laws
@ Discontinuous Hamilton-Jacobi equations
@ The discontinuous HJ-SCL correspondence

© Uses of the correspondence

@ !deas and open questions
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Continuous
©0000

We consider a quantity p(t, x) that is conserved for all times, traveling
with a flux f(t,x) > 0 directed towards the right.

t
fab p(r,x)dx

we have:

/abp(r’x)dxz/abp(s’x)dx""/srf(t»a)dt—/srf(t,b)dt,

b pr
/ / Orp(t, x) + Oxf(t, x)dtdx = 0.
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In LIGHTHILL AND WHITHAM 1955; RICHARDS 1956, the flux
is equal to the density multiply by the speed of agents.

F(£,%) = p(t, x)v(£,x)
The velocity v is itself governed by the local density:

Pmax — P

v(t, X) := Vmax -

We end up with a scalar conservation law,

Orp(t, x) + Oxf(p(t,x)) =0
{ $(0,%) = polx). (et)

We often suppose that vinax = pmax = 1. In order to clarify the
notations for the HJ-SCL correspondence we will instead denote
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Non-existence of classical solutions

Method of characteristics for a simple SCL where H(p) = p?/2 to
propagate the initial datum:
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Then we consider weak solutions :
Vo € CF°, // pdr + H(p)px dtdx =0
(0,T)xR
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Continuous
0000

Non-uniqueness of weak solutions

Consider
fons =0
P(0,x) = L(0,40)

Then the two functions p described below are weak solutions:

X=%t
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f the correspondence Ideas and open questions

Notion of entropy solutions

In KRUZKOV 1970, the author introduces the notion of entropy
solutions.

Definition (Entropy solution to (SCL))

We say that p € L*°((0, +00) x R) is an entropy solution to (SCL)
if:

e for any non-negative ¢ € C2°((0, +00) x R), for any k € R, we
have

// o — K|35+ sign(p — k) [H(p) — H(K)] Bxdtdx > 0,
(0,40) xR

o if we denote by p(0™, x) the strong trace of p,

/ Yo 9 — el P = B,
R
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Continuous
©0000

Optimal control problem

For any (t,x), we consider controlled trajectories of the form:
Y € WH(0, t) s.t. 7(0) = x.

We denote by I, ) the set of all admissible trajectories. Then we

introduce the cost functional:
t
S = [ L0(a) (o)) ds + (1),

where:
e L(x,v) corresponds to a running (or instantaneous) cost function,
e g corresponds to a terminal cost.
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Continuous
0®000

Hamilton-Jacobi equations

We define the value function

u(t,x) == Weip(f )J(t,x,’y). (1)

It is classical that an optimal control problem can be seen as an
Hamilton-Jacobi equation.

Let u be the value function defined by (1). Then, u is a solution to

{8tu+H(X,8Xu) =0 (H)

u(0,x) = g(x),

where H is given by:

H(x, p) := ilég{—pv — L(x,v)}.
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Non existence of classical solutions

We chose Q = (—1,1) and the simplest Hamilton-Jacobi equation:

ohu(x)=1 xe(-1,1
{| u(>(<))|:o Xez( ﬁ:l,) (2)

Non-existence of u € C1([—1,1]) satisfying (2).
Non-uniqueness of solutions almost everywhere:

u(-1)=0 u(l)=0
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Continuous is Uses of the correspondence Ideas and open questions

Viscosity solutions

In CRANDALL, EVANS, AND LIONS 1984 the authors introduce the
notion of viscosity solutions for (HJ).

Definition (Viscosity solutions of (HJ))

We say that u € C([0, +00) x R) is:
@ a viscosity subsolution to (HJ) if, for any ¢ € C1([0, +00) x R), for
any xo € Q, if (t,x) — u(t,x) — ¢(t, x) admits a maximum at
(t,x) = (to, x0), we have:

9:9(to, x0) + H(x0, 9x¢(to, x0)) < 0.
@ a viscosity supersolution to (HJ) if, for any ¢ € C}([0, +c) x R),
for any xo € Q, if (t,x) — u(t,x) — ¢(t, x) admits a minimum at
(t,x) = (to, x0), we have:

at(b(to,Xo) an H(X07 6X¢(t07X0)) = 0.

@ a viscosity solution to (HJ) if it is both a subsolution and a
supersolution.
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Continuous i Uses of the correspondence Ideas and open questions

Theorem (Main results on viscosity solutions)

Let K > 0 and let H(x, p) be convex in p for any x and such that:
H(x, p) — H(x,q) < K([x| + 1)|p — ql.

Then we have that:

e for any initial datum ug € W1, there exists a viscosity solution
u of (HJ),

e let u (resp. v) be a viscosity subsolution (resp. supersolution),
then we have the comparison principle:

u<von(0,+00) xR;

e the value function u defined by (1) is the unique viscosity
solution of (HJ) with a terminal cost g = ug.
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Continuous

@000

Entropy solutions VS viscosity solutions |
Suppose that u is affine by part of the form
u(t,x) = —Kt + kpx1g- + krx1g+,

such that
K = H(k.) = H(kgr).

Then, u being a viscosity subsolution means that, for any
p € [ki, kr], we have

—K +H(p) <0.

On the other hand, u being a viscosity supersolution means that,
for any p € R\(k., kr), we have

—K + H(p) > 0.
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Continuous
000

Entropy solutions VS viscosity solutions
Now we consider
p(t,x) = ki lg- + krlg+.

If p satisfies the Kruzhkov entropy inequality with | - —p|, then we
get:

sign(k. — p) [H(k.) — H(p)] < sign(kr — p) [H(kr) — H(p)]-
In particular, if p € [k;, kgr], we get
H(p) — K < K — H(p) < —2K + 2H(p) < 0.
And if p € R\(kg, kg), we get

K — H(p) < —K + H(p) & —2K + 2H(p) > 0.
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Continuous

[eJe] o]

HJ-SCL correspondence in the litterature

In the litterature:
@ For stationary equations: CASELLES 1992

@ In the homogenous convex case, using vanishing viscosity:
CORRIAS, FALCONE, AND NATALINI 1995

@ In the homogenous convex case, using front-tracking:
KARLSEN AND RISEBRO 2002

@ In the heterogenous case, using vanishing viscosity:
CoOLOMBO, PERROLLAZ, AND SYLLA 2023
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Continuou i i Uses of the correspondence Ideas and open questions
fete} 8 9 ocoo 0000

Theorem (COLOMBO, PERROLLAZ, AND SYLLA 2023)

Let H(x, p) be convex in p for all x, H € C3 : R x R, independent
of x outside of a compact subset of R. Let ug € W1, we denote
po = Oxlg € L. We denote by u the unique viscosity solution of

{Otu + H(x,0xu) =0
u(0, x) = up(x).

We denote by p the unique entropy solution of

{&p + OxH(x,p) =0
p(0,x) = po(x).

Then we have, in the distributional sense

p = Oxu.
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Discontinuous

00000

Strong traces of entropy solutions

Theorem (VASSEUR 2001; NEVES, EVGENIY PANOV, AND

SILVA 2018)

If p € L*((0,400) x R) is an entropy solution of (SCL), then, for
any open subset Q C (0,+00) x R with Lipscitz boundary, there
exist a strong trace of p denoted by

() € L7(09).

If £ € WH*((0,+00)), we denote
t

yLp YRP
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Discontinuous
0®0000

Scalar conservation law with discontinuous flux

This situation can be modelled by the discontinuous-flux scalar
conservation law:

Orp(t, x) + Ox [HL(p(t, x))] = x<0
{atp(t x)+ O« [Hr(p(t,x))]=0 x>0 (SCL-disc)
p(0,x) = po(x) xeR
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Discontinuous
00000

The notion of G-entropy solutions

Definition (G-entropy solution ANDREIANOV, KARLSEN, AND

RISEBRO 2011)

Let po € L°(R). Let G C R? be a germ. We say that

p € L*°((0, T) x R) is a G-entropy solution to (SCL-disc) if:

e p is a weak solution to (SCL-disc).

e p satifies the Kruzhkov entropy inequalities on (—o0, 0) with H;
and on (0, +-00) with Hg.

e The strong traces satisfy the condition

(vLp(t),vrp(t)) € G for ae. t € (0, T).
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Continuous Discontinuous Uses of the correspondence Ideas and open questions

The notion of L! dissipative germ

Definition (Germ and properties)

i) (germ) A set G C R? is a germ if any element (p, pr) of G
satisfies the Rankine-Hugoniot condition, i.e. the conservation of
the density:

Hi(pL) = Hr(pr)-

ii) (L'-dissipative germ) The germ G is L!-dissipative if any pair
of elements of G satisfies the L! dissipativity condition i.e. for any
p = (pr,Pr),q = (gL, qr) € G, we have:

sign(pL—qr) [He(pL) — Hi(qL)] > sign(pr—qr) [Hr(Pr) — Hr(qr)]

iii) (maximal L!-dissipative germ) The germ G is maximal in the
sense of the inclusion.

iv) (complete germ) The germ G is complete if there exists a G
entropy solution for any initial datum constant on each half-line.
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Well-posedness of (SCL-disc)

Theorem (Existence and uniqueness for (SCL-disc), ANDREIANOV,

KARLSEN, AND RISEBRO 2011)

Let pg € L*°(R). Let G be a germ.
(i) If the germ G is L'-dissipative and maximal, there exists at
most one G-entropy solution to (SCL-disc).

(i) If the germ G is complete, then there exists a solution
G-entropy to (SCL-disc).
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Ga:=G1UGUGUG,

YLP YRP P

Gy :=10,1/4] x [3/4,1]

YRP P

Gz :=[3/4,1] x [3/4,1]

H(p)

G4 :=10,1/4] x [0,1/4]
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Discontinuous
®00

Discontinuous Hamilton-Jacobi equations

A prototype example of discontinuous Hamilton-Jacobi
equation:

Oru+ Hi(x,04u) =0 x<0
Oru+ Hr(x,04u) =0 x>0 (HJ-disc)
u(0, x) = up(x).

Variations of the notion of viscosity solutions for discontinuous
Hamilton-Jacobi equations:

o Weak viscosity solutions, IsHIT 1985
@ Flux-limited solutions, IMBERT AND MONNEAU 2017
@ An overview on the subject, BARLES AND CHASSEIGNE 2023
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Discontinuous

[e] e}

Notations for the flux-limited approach

Let H : R — R be strictly convex and be such that

H(p) ||—> + 00. We denote b := argmin H. We define the two
p|—+o00

associated monotone envelopes for any p € R
H(b for € (—oo,b _ H for € (—oo,b
() pe( I p (p):{ (p) pe( ]

+ —
H™(p) = { H(p) for pe€[b,+0) H(b)  for pe€[b,+0)
that we represent below for given example of H below.

NN

H
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D|s ntmuous Uses of the correspondence Ideas and open questions

[slslele] Jo

The flux-limited approach

In IMBERT AND MONNEAU 2017, the authors introduce the
notion of flux-limited viscosity solution for discontinuous

time-dependent Hamilton-Jacobi equations (HJ-disc).

Definition (Strong flux-limited solution, IMBERT AND MONNEAU 2017)

Let A € R. Let H; r be convex. We define, for any (pr, pr) € R2, the following
Hamiltonian
Ha(p, pr) = max{A, H (p.), Hr (Pr)}.

Let u € C°((0,4+00) x R). We say that u is an A-flux-limited viscosity solution
to (HJ-disc) if u is a viscosity solution of

ut(to,Xo) + HL(UX(to,Xo)) =50 if xo <0
u(to, x0) + Hr(ux(to, x0)) =0 if o >0
ut(to, xo0) + Ha(ux(to, Xy ), ux(to, X)) =0 ifx =0.

From IMBERT AND MONNEAU 2017,

Theorem (Well-posedness of (HJ-disc))

For any A € R, there exist a unique A-flux-limited viscosity solution of
(HJ-disc).




of the correspondence Ideas and open questions

HJ-SCL correspondence with a discontinuity

Theorem (CARDALIAGUET, FORCADEL, GIRARD, AND

MONNEAU 2024)

Let ug € WE°°(R) and pg := Oxuo. Let Hi g be two convex and
coercive functions. Under suitable assumptions on ug and Hy g, for
any A € R, we construct the following germ:

Ga = {(pr, pr) € R? s.t. H.(pr) = Hr(pr) = Ha(pL, PR)} -

Then, if we denote by:
@ u the unique A-flux-limited solution to (HJ-disc);
@ p the unique Ga-entropy solution to (SCL-disc);

then, in the distributional sense, we have

Oxu = p.
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Discontinuous
Y Yete)

|dea of the proof |

Let F; gr(:,-) define a numerical flux (such as Godunov flux)
adapted to H; g. We define the following finite differences scheme
for (HJ-disc):

un(t + At, x) — ua(t, x)

At
FL( (t)<+AA)<>)( uA(tx) up (t,x)— uAAX(:X Ax)) ifx <0
=< Fr ( (t, x+AAxl ”A(tsx)’ up (t,x)— ZA(tsX*AX) x>0
Ha (uA(t,x+AAxl uA(tx) up(t,)— ZAX(tx Ax) i x = 0.

Then, we denote

ua(t,x + Ax) — ua(t, x)

pa(t,x + Ax/2) = A
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Discontinuous
ooeo

|dea of the proof Il

Then we obtain a finite volume scheme for (SCL-disc):

PA(t + At,X) - pA(t7X)
At

FL(pA(t7X - AX)rpA(tvx)) - FL(pA(tvx)va(t7X + AX)) if x < _AX/2
— _i FL(pA(t’X - AX)sz(tvx)) - HA(pA(t»X)va(tzx + AX)) if x = 7AX/2
T Ax ) Halpa(t,x — Ax), pa(t, x)) — Fr(pa(t, x), pa(t,x + Ax)) if x = Ax/2

FR(pA(t’X - AX)rpA(tvx)) - FR(PA(tvx):PA(t»XJF AX)) if x > AX/2

Then, at a discrete level, we have a HJ-SCL correspondence. The two schemes
converge, see GUERAND AND KoumaiHA 2019 and ANDREIANOV AND SYLLA 2022.
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Discontinuous
oooe

A counter-example on a network with 3 or more branches

pt+ Hi(p)x =0 pt+ Hr(p)x =0
rt v r2

pt+H(p)x =0
pt + H(p)x =0
r3

pt+ H(p)x =0

@ There exists a unique A-flux-limited solution u to (HJ) on the
network.

o If N > 3, the corresponding G4 germ is not L!-dissipative.
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Uses of the correspondence
®00

Notables uses of the correspondence

e In LELLIS, OTTO, AND WESTDICKENBERG 2004;

E.Y. PANOV 1994, the authors prove that only one (stricty)
convex entropy is required in order to caracterize the entropy
solution. This result is proven in both paper by using the
Hamilton-Jacobi equations theory thanks to the correspondence.

e In COLOMBO, PERROLLAZ, AND SYLLA 2024, the authors are
able to describe a reachable set of terminal data and its
corresponding initial data for heterogenous scalar conservation laws
by using the HJ-SCL correspondence.
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Uses of the correspondence
oceo

Control of discontinuous scalar conservation laws

Let H be concave and T > 0. Let A: (0, T) — [0, max H]. We
denote by p” the unique solution to

Oep+0xH(p) =0
H(p(t,0)) < A(t)
p(0, x) = po(x).
We are now interested in the optimal A* in the following
minimization problem:
T
0

)
o [ [ senteaacs [ gawa (@)
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Work in progress with P. Cardaliaguet and Y. Achdou

By passing to the corresponding Hamilton-Jacobi problem, we can
"regularize" the control problem by studying the solution u®* to:

Oru + He(x, a(t),0xu) =0,

where
H(p) if |x| > €
He(x, 0, p) = aH(p) if |x| < ¢/2
a C! monotone regularization else.

Then we hope to prove that:
e we can construct an optimal control a* to the minimization
problem (P) with u = u®*;
e we have the -convergence o* - A*/ max H;
€E—
e A* is an optimal in the original control problem.
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Ideas and open questions
€000

On a network...

Pt — f(p)x =0
3 pt +f(p)x =0
2 r
Pt — f(p)x =0 v
r5
rt pt +f(p)x =0
pt —f(p)x =0

Figure: Example of a I's network.
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Ideas and open questions
oeo0

Classifying the L! dissipative germs with N > 3

A computer assisted method in order to classify the different types
of germs for more general junction.

pP\p' | S1 S S3 Sa Ss Se S7 Ss
S |0 ~ [¢) [¢) ~ f(ps) < f(P}) o
f(p2) > f(ph f(p1) < f(p1) , f(p3) < f(p3) ,

s | s |~ [ {HR) 2 HE [ {2 e | o027 {f(m)Zf(P;) lez) = fle)

ST o e T | - -

s 0 {ﬁgﬁﬂ = 0 F(ps) < F(p}) 0

5 xas(+) ~ S e )

f(ps) < £(p3)

S o M ~
o) = 77D

s X {f(Pz) S

Se x12(+)

Work in progress...
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Ideas and open questions
o00eo

Non L! dissipative notion of solution ?

We can derive a notion of solution for

Otpa(t, x) — Ox [Ha(pa(t,x))] =0 ifacl
Otpa(t, x) + Ox [Ha(pa(t,x))] =0 ifaeJ (3)
Fo((pa(t,07))1<a<n) =0,
as the spatial derivative of the unique flux-limited solution of
Oruqn(t, x) — Ha(Oxua(t, x)) =0 ifael
Orun(t,x) — Ha(Oxua(t,x)) =0 ifaecd (4)

0.

Oruia(t, x) + Fo((Oxta(t,07))1<asn)

Is this solution relevant towards applications 7 Does the solution
preserves the order ?
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Ideas and open questions
oooe

Thanks for your attention !
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HJ-SCL bonus
©000

Simplest counter-example

G1:= {(p1, p2, p3) s.t. 2f(p1) = 2f(p2) = f(ps) with ps € [3/4,1]}
Go == {(p1, p2, p3) s.t. 2F(p1) = 2F(p2) = F(ps) with py < [0.¢7 ]}
G := {(p1, p2, p3) s.t. 2f(p1) = 2f(P2) f(ps) with p < [0,q" [}
g4 ={(q",q7,1/4)}
G = Q1U92UQ3UQ4-
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HJ-SCL bonus
0e00

f(p)
A-booo N G is not
L!-dissipative:
B
Af2 -t -flemm e - I (ft ot
842 p_(q »d 73/4)€g17
p = (p1, P2, p3) € G2
P3 p
P1 P2
o+ 3/4

G1 := {(p1, p2, p3) s.t. 2f(p1) = 2f(p2) = f(p3) with ps € [3/4,1]}
G2 := {(p1, p2, p3) s.t. 2f(p1) = 2f(p2) = f(ps) with p1 € [0, 7]}
Gs := {(p1, p2, p3) s.t. 2f(p1) = 2f(p2) = f(p3) with p> € [0, ¢ 7]}
Ga={(q".q7,1/4)}

G =G UG, UG UGy
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HJ-SCL bonus
coeo

f(p)
A-booo N G is not
[!-dissipative:
B
A2 -t-fr-mmmm oo oo - I (qF ot
842 p_(q »q 73/4)6g1,
p = (p1, P2, p3) € G2
p3 p
P1 P2
+ 3/4

sign(p1 — p1) [f(p1) — F(p1)] + sign(p2 — p3) [F(p2) — F(p)]
—sign(ps — p3) [F(p3) — F(P3)
—(B/2—A/2)—(BJ2—AJ2)+(B—A)=B—A<0.

—

41 /42



")
=
=
o

0

o

[ ]

Q0o

o}

ac©

ldeas on the computer assisted method

Se

x12(+)

f(p3) < (P

Se

x1,3(+)

S4

Ss

S

S

P\p'

S1

S
S3
Sa

S5

Se
S

S8
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