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L Motivations

We want to model a moving crowd. The crowd is represented as a
pedestrian density p(t, x) between 0 and 1.

Starting at t = 0, the pedestrians want to move out of the room
using the exit(s).
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L Motivations

In the 1D setting, we model the transport using a scalar
conservation law:
pt +f(p)x = 0.

The flux is equal to the density multiply by the speed of agents.
f(s,x) := p(s,x)v(s, x)
The velocity v is itself governed by the local density:
V(5:%) = Vimax(1 — 1)
We set vmax = 1 and recover:
F(5,%) = F(pls, X)) = p(s,x)(1 — p(s,))

e M. J. Lighthill and G. B. Whitham, On kinematic waves. ii. a
theory of traffic flow on long crowded roads, (1955).
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L Motivations

Back to the initial problem, at t = 0, the agents want to exit the
room minimizing their exit time (or total cost...).

E

2

1 E=E,UE,UE,

Suppose V/(t,x) € St is a vector field corresponding to the choice
of direction of an agent located in x at time t. Then the density
equation follows from LWR:

pr + dive(V(t, x)pv(p)) = O.

How do we compute V ?
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For a fixed density p(x), we use an optimal control problem.
Fix a density p in a given domain Q. Let a(-) € C1(]0, +00), S?).
Consider the following dynamic for the controlled trajectories y,
solution of the Cauchy problem:

{)’/x(t) = v(p(yx(1)))a(t)
yx(0) = x.

In order to model the "disconfort" one can experiment by staying in
high density regions, we use a running cost function g(p) increasing
with respect to the density. Also, since each agent seeks to
minimize its exit cost, we assume g > 0. We define the value
function:

u(x) = inf /O e (o)1l () dt.
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Heuristically, suppose that the infinum is a minimum reached for an
optimal trajectory y;(-).
The pedestrian at x should follow the direction field V(x) = yz(0).
Then, using the dynamic programming principle, we should have
. Vu(x)
V(x) =y:(0) =
) VeIl

For a fixed p, using the classical Hamilton-Jacobi-Bellman
approach, we want to find the gradient of the viscosity solution the
following eikonal equation:

g(

v(p)

IVul] = EP) —: ().

Two big criticism of this model :

e For any t, each agent instantaneously knows the density of the
crowd in the whole domain.

e The agents do not anticipate the movement the other pedestrian.
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L Motivations

To summarize, we should find the solutions of the Hughes model:

pe + divx(wvu“p\;(p)) =0
|v U‘ g P
u(x € E) @
(0, x) = po(x)

where g is a given cost function depending on the local density.
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For the one-dimensional problem, there exist a few existence
results:

m B. Andreianov, M. Rosini, and G. Stivaletta. On existence,
stability and many-particle approx- imation of solutions of 1D
Hughes model with linear costs, 2021.

m B. Andreianov, T. Girard, Existence of solutions for a class of
one-dimensional models of pedestrian evacuations, SIAM J.
Math. Anal. 56 (3), 2024.

m Halvard Olsen Storbugt. Convergence of rough
follow-the-leader approximations and existence of weak
solutions for the one-dimensional Hughes model. Discrete and
Continuous Dynamical Systems, 2024.
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The 2D case is still an open problem...
In the following we focus mainly on the problem:

|Vul| = ¢(x) in Q
{ u=20 in E, (2)

where

c e L™, (7)),
O<c<e.
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L Notion of solution

The classical viscosity solutions for the eikonal equation:

Definition (Subsolution (resp. supersolution) to (2))

We say that u € Co_(f_l) is a subsolution (resp. supersolution) to (2)
if, for any ¢ € C}(Q), if u — 1 admits a maximum (resp. a
minimum) at xp, we have

[IV(x0)|| < (resp. > ) c(xo) if xo € Q
U(Xo) =0if xg € E

Problem : The uniqueness proof relies on the continuity of the
source term c.
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L Notion of solution

Let (U;); be a family of open sets such that meas(Q2 — | J; U;) =0
and v is continuous on each U;. We can define the solution to the
scalar conservation law:

Definition

Let po € L>°(2). We say that p € L™ is a solution to (1) iif p is a
weak solution and for any i € /, for any non-negative
¢ € C([0, T) x U;), for any k,

J[ -l Kién + sign(p = K)F(p) — £ v(x) - V(6) dedx
(O,T)XU;
- // sign(p — k)f(k)div(v(x))pdtdx

(OzT)XUi

+/Im—kwwwﬁh20
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L Notion of solution

Discontinuous viscosity solutions:
m The stratified approach
m flux-limited solutions (Imbert, Monneau)
m junction viscosity solutions (Lions, Souganidis)

General reference : G. Barles and E. Chasseigne. On Modern
Approaches of Hamilton-Jacobi Equations and Control Problems
with Discontinuities. Springer, 2024.

Drawback : one needs to know precisely where the discontinuities
are beforehand in order to use these notions of solution.
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Monge solutions :
R. Newcomb and Jianzhong Su. Eikonal equations with
discontinuities. Differential and Integral Equations, 1995.

Let T > 0, we denote by I, the set :
M= {y € Wh([0, T],Q) s.t. Vt € [0, T],7(t) € Q,+(0) = x}.

We define :

)
Lxy)= inf /OC(v(t))l"Y(t)ldt- 3)

v ey
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We say that v is a Monge subsolution (resp. supersolution) with
state-constraint to

{HVU(X)H =c(x) ifxeQ-E
u(x) =0 if x€E

if forany xo € Q — E

i ing 400 = (ul0) = Lo0. X))

X—rX0 |X—X0‘

(resp. <0) (4)

and Vx € E, u(x) = 0.

If c is l.s.c. then u is unique.
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L Notion of solution

Heuristics.

Lemma (A Monge solution lies on its lower Monge cones)

If u e Co%(Q) N W>°(Q) is a Monge subsolution of (4) then for

any xo € Q there exists r > 0 such that for any x € B,(x) (2,

u(x) > u(xo) — L(x,x0)- (5)
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L Notion of solution

Maximal Lipschitz viscosity subsolution VS Monge solution

Q=[-1,1x[0,2], £E=[-1,1] x {0}

c(x):{; ifx=0

else

. . ) . Monge solution
Maximal Lipschitz subsolution ;

N\ /S
ui(x,y) =2y N

\ /
\ ’
\ ’

\

/
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L Notion of solution

Closest existing result:

A. Festa and M. Falcone. "An Approximation Scheme for an
Eikonal Equation with Discontinuous Coefficient”, SIAM J. Numer.
Anal., 52(1) (2014): 236-257

Convergence of a numerical scheme (following the semi-lagrangian
approach) under the cone assumption on c :

¥ >0,K >0,Yx € Q,3n, € S, Vy € B(x,n),¥r >0,Vd €
Stst. |d—n <ny+rdeQ,

c(y + rd) — c(y) < Kr.

Under this assumption, the Ishii solution u is unique and the
numerical scheme converges to u. However, in the previous
example, both the Lipschitz and the Monge solution are Ishii
solutions.
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L The numerical scheme

We want to approximate the Monge solution of the Eikonal
equation on a triangular mesh Ma := (75)1<n<n-
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L The numerical scheme

We discretize the source term:

v 1,N],cp:= inf , 6
ne LN = inf c(x) (©

ca(x) =Y 17,(x)cn
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L The numerical scheme

The fast marching principle and the narrow band depth

Narrow band depth 1 Narrow band depth 2
VFWT*7F7V§QVV*VV\ NR AU VA B AVAN WAV iy
‘\/\A\ DD /\ 4 \\\\/\//\D\\Q \/ N \/4 & /\ {\\/B\é@é{ﬁ@(\
//\ //\'\ KK (] ‘/é\/ \/\7 \/\®\/N\/\/<\/>%\ |>/ /\f/\/ %N \J/\ 7 %%@Si%@%\( |

SRR QPANR N SWVADA
RORRERR IR D\\/_\>}\\/><\>\\\7\//\</-M4\/N/\/
R RS X IIOIERERIER]
DOk YA
O P N/ QLA ST
TSRO0 (e
A NP Y NS TSN N
AN TR PO RGP,
ARt TVl AV bt AV
2\?‘3@%\‘4\7\4&5’%%7 DW 7Ry o i S A
S W= rav SRR S
\\/\/< /\/\/\/ \/\\\//\/\/\&( \\/\ NVAN /\ ///\/\ \/\/\\/V\//\\/\/A%f O A \\‘
AW APATANS I&L\/;L\m 77777 D AVAVAVNYA



A numerical scheme for the discontinuous Eikonal equation
L The numerical scheme

The computations inside a triangle.
In the following, we denote 7, = ABC and V4 g ¢ stands for
un(A, B, C). We define:

¢VA7V57VC .

ABC xﬁ+yATC>H Va+ (Vg — Va)x + (Ve — Va)y.

(7)
Then the gradient of ¢X§’CVB’VC is constant on R?. Consequently,
we define:

{ R2 — R

Hagc(Va, Vg, V) = qu)AVE,CVB,vCH'
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L The numerical scheme

For any triangle 7, with two validated points B and C with
Ve < V¢, we set Vj“ =

AB-BC(Vc—V, | det(AB,BC)|\/c2BC2—(Vg—Vc)? .
Vg — ABBCOc—Ve) 47 if ca|BC| > |V — Vc|

Ve + ca AC else
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L The numerical scheme

If instead we compute :

Vi b [ cali(o]de+ Usc(r(T))
1 EWHR(0.T)

7(0) = A
Y(T) € [BC]

We obtain \N/f =

Vs + calAB| ichABBC+VC—VB>0

Ve + cal AC| ichACBC+VC—VB<O

else

AB-BC(Vc—V, | det(AB,BC)|/c2 BC2—(Vg—V,
Ve — aes e+ BC?

A choice: do we use the constrained gradient or not ?
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L The numerical scheme

The issue with obtuse triangles

c

I
o

best trajectory
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L The numerical scheme

Let P be the point phrozen at the step n. We set

Good properties
m (Monotonicity) If ca < €a then up < Ua.
m (Compactness) ||Vual|| < <.
m (Partial consistency) Let ¢ € C*(Q2). Then
limsup  [Hasc(6(A), #(B), (C)) — caly)] < [[Vo(x)[|—c(x).

y—x, yEABC
(8)



c
.9
pe]
©
3
T
5]
©
c
[°]
=
w
)
3
o
3
=
B
<
o
]
2
<
)
<
]
»
L
]
£
]
<
]
@
©
[y
T
o
£
E}
c
<

al simulations

LNume

Comparison of the numerical approximations with different

options
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L Numerical simulations

Narrow band depth 1, Narrow band depth 2,
unconstrained gradient unconstrained gradient
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L Numerical simulations

Narrow band depth 1, Narrow band depth 2,
constrained gradient constrained gradient
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—Numerical simulations

Narrow band depth 1,
unconstrained gradient

R4 ofd //7f SR ETE
NP 1 77 S

Narrow band depth 2,

unconstrain
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Narrow band depth 1, Narrow band depth 2,
unconstrained gradient

constrained gradient
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L Numerical simulations

Hughes 2D in the university restaurant of Tours
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L Numerical simulations

Thanks for your attention.
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