A numerical scheme for the discontinuous Eikonal equation

T. GIRARD

Institut Denis Poisson, Université de Tours

September 19, 2024

KID KA LATER KER I E NOVO

- [Notion of solution](#page-10-0)
- [The numerical scheme](#page-18-0)
- [Numerical simulations](#page-26-0)

K ロ ▶ K 個 ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q Q →

We want to model a moving crowd. The crowd is represented as a pedestrian density $\rho(t, x)$ between 0 and 1. Starting at $t = 0$, the pedestrians want to move out of the room using the $exit(s)$.

In the 1D setting, we model the transport using a scalar conservation law:

$$
\rho_t + f(\rho)_x = 0.
$$

The flux is equal to the density multiply by the speed of agents.

$$
f(s,x):=\rho(s,x)v(s,x)
$$

The velocity v is itself governed by the local density:

$$
v(s,x):=v_{\max}(1-\rho)
$$

We set $v_{\text{max}} = 1$ and recover:

$$
f(s,x) := f(\rho(s,x)) := \rho(s,x)(1-\rho(s,x))
$$

• M. J. Lighthill and G. B. Whitham, On kinematic waves. ii. a theory of traffic flow on long crowded roads, (1955).

Back to the initial problem, at $t = 0$, the agents want to exit the room minimizing their exit time (or total cost...).

Suppose $V(t,x)\in\mathcal{S}^1$ is a vector field corresponding to the choice of direction of an agent located in x at time t . Then the density equation follows from LWR:

$$
\rho_t + \operatorname{div}_x(V(t,x)\rho v(\rho)) = 0.
$$

How do we compute V ?

For a fixed density $\rho(x)$, we use an optimal control problem. Fix a density ρ in a given domain Ω. Let $\alpha(\cdot)\in{\cal C}^1([0,+\infty),{\cal S}^1).$ Consider the following dynamic for the controlled trajectories y_x solution of the Cauchy problem:

$$
\begin{cases}\n\dot{y}_x(t) = v(\rho(y_x(t)))\alpha(t) \\
y_x(0) = x.\n\end{cases}
$$

In order to model the "disconfort" one can experiment by staying in high density regions, we use a running cost function $g(\rho)$ increasing with respect to the density. Also, since each agent seeks to minimize its exit cost, we assume $g > 0$. We define the value function:

$$
u(x) = \inf_{\alpha(\cdot)} \int_0^\infty g(\rho(y_x(t))) \mathbb{1}_{\Omega}(y_x(t)) dt.
$$

KORKAR KERKER EL VOLO

Heuristically, suppose that the infinum is a minimum reached for an optimal trajectory $y_x^{\star}(\cdot)$.

The pedestrian at x should follow the direction field $V(x) = \dot{y}_x^{\star}(0)$.

Then, using the dynamic programming principle, we should have

$$
V(x) = \dot{y}_x^{\star}(0) = -\frac{\nabla u(x)}{\|\nabla u(x)\|}.
$$

For a fixed ρ , using the classical Hamilton-Jacobi-Bellman approach, we want to find the gradient of the viscosity solution the following eikonal equation:

$$
||\nabla u||=\frac{g(\rho)}{v(\rho)}=:c(x).
$$

Two big criticism of this model :

- For any t , each agent instantaneously knows the density of the crowd in the whole domain.
- The age[nt](#page-5-0)s do not anticipate t[he](#page-7-0)movement the [ot](#page-6-0)[h](#page-7-0)[er](#page-1-0) [p](#page-9-0)[e](#page-2-0)[d](#page-1-0)e[s](#page-9-0)[tr](#page-10-0)[ia](#page-0-0)[n.](#page-32-0)

To summarize, we should find the solutions of the Hughes model:

$$
\begin{cases}\n\rho_t + \operatorname{div}_x(\frac{-\nabla u}{|\nabla u|}\rho v(\rho)) = 0 \\
|\nabla_x u| = \frac{g(\rho)}{v(\rho)} \\
u(x \in E) = 0 \\
\rho(0, x) = \rho_0(x)\n\end{cases}
$$
\n(1)

KE K K 4 H K A L K H L A V A C

where g is a given cost function depending on the local density.

For the one-dimensional problem, there exist a few existence results:

- B. Andreianov, M. Rosini, and G. Stivaletta. On existence, stability and many-particle approx- imation of solutions of 1D Hughes model with linear costs, 2021.
- B. Andreianov, T. Girard, Existence of solutions for a class of one-dimensional models of pedestrian evacuations, SIAM J. Math. Anal. 56 (3), 2024.
- Halvard Olsen Storbugt. Convergence of rough follow-the-leader approximations and existence of weak solutions for the one-dimensional Hughes model. Discrete and Continuous Dynamical Systems, 2024.

The 2D case is still an open problem...

In the following we focus mainly on the problem:

$$
\begin{cases}\n||\nabla u|| = c(x) & \text{in } \Omega \\
u = 0 & \text{in } E,\n\end{cases}
$$

(2)

K □ ▶ K @ ▶ K 할 ▶ K 할 ▶ ... 할 ... 900

where

$$
c\in L^{\infty}(\Omega,(\underline{c},\overline{c})),
$$

$$
0<\underline{c}<\overline{c}.
$$

The classical viscosity solutions for the eikonal equation:

Definition (Subsolution (resp. supersolution) to [\(2\)](#page-9-1))

We say that $u\in\mathcal{C}^0(\bar{\Omega})$ is a subsolution (resp. supersolution) to [\(2\)](#page-9-1) if, for any $\psi\in\mathcal{C}^1(\bar{\Omega}),$ if $u-\psi$ admits a maximum (resp. a minimum) at x_0 , we have

$$
||\nabla \psi(x_0)|| \leq (\text{resp. } \geq) c(x_0) \text{ if } x_0 \in \Omega
$$

$$
u(x_0) = 0 \text{ if } x_0 \in E
$$

Problem : The uniqueness proof relies on the continuity of the source term c.

KORKAR KERKER EL VOLO

Let $(U_i)_i$ be a family of open sets such that meas $(\Omega - \bigcup_i U_i) = 0$ and v is continuous on each U_i . We can define the solution to the scalar conservation law:

Definition

Let $\rho_0 \in L^{\infty}(\Omega)$. We say that $\rho \in L^{\infty}$ is a solution to [\(1\)](#page-7-1) iif ρ is a weak solution and for any $i \in I$, for any non-negative $\phi \in \mathcal{C}_{c}^{\infty}([0,\, \mathcal{T}) \times U_{i}),$ for any k ,

$$
\iint_{(0,T)\times U_i} |\rho - k|\phi_t + \operatorname{sign}(\rho - k) [f(\rho) - f(k)] v(x) \cdot \nabla_x(\phi) dt dx
$$

$$
- \iint_{(0,T)\times U_i} \operatorname{sign}(\rho - k) f(k) \operatorname{div}(v(x)) \phi dt dx
$$

$$
+ \int_{U_i} |\rho_0 - k| \phi(0, x) dx \ge 0
$$

KORKA SERKER STRACK

Discontinuous viscosity solutions:

- The stratified approach
- **Filtum-limited solutions (Imbert, Monneau)**
- \blacksquare junction viscosity solutions (Lions, Souganidis)

General reference : G. Barles and E. Chasseigne. On Modern Approaches of Hamilton-Jacobi Equations and Control Problems with Discontinuities. Springer, 2024.

Drawback : one needs to know precisely where the discontinuities are beforehand in order to use these notions of solution.

KORKA BRADE KORA

Monge solutions :

R. Newcomb and Jianzhong Su. Eikonal equations with discontinuities. Differential and Integral Equations, 1995.

Let $T > 0$, we denote by Γ_{x} the set :

 $\Gamma_x := \{ \gamma \in W^{1,1}([0,\,T],\bar{\Omega}) \text{ s.t. } \forall t \in [0,\,T], \gamma(t) \in \bar{\Omega}, \gamma(0) = x \}.$ We define :

$$
L(x,y) = \inf_{\gamma \in \Gamma_x} \int_0^T c(\gamma(t)) |\dot{\gamma}(t)| dt.
$$
 (3)

$$
\gamma(T) = y
$$

KORKAR KERKER EL VOLO

Definition

We say that u is a Monge subsolution (resp. supersolution) with state-constraint to

$$
\begin{cases}\n||\nabla u(x)|| = c(x) & \text{if } x \in \overline{\Omega} - E \\
u(x) = 0 & \text{if } x \in E\n\end{cases}
$$

if for any $x_0 \in \overline{\Omega} - E$

$$
\lim_{x \to x_0} \inf \frac{u(x) - (u(x_0) - L(x_0, x))}{|x - x_0|} \ge 0 \text{ (resp. } \le 0 \text{)} \tag{4}
$$

KORKA BRADE KORA

and $\forall x \in E, u(x) = 0$.

If c is l.s.c. then u is unique.

Heuristics.

Lemma (A Monge solution lies on its lower Monge cones)

If $u \in C^0(\bar{\Omega}) \bigcap W^{1,\infty}(\Omega)$ is a Monge subsolution of [\(4\)](#page-14-0) then for any $x_0 \in \bar{\Omega}$ there exists $r > 0$ such that for any $x \in B_r(x_0) \bigcap \bar{\Omega}$,

$$
u(x) \ge u(x_0) - L(x, x_0).
$$
 (5)

KORKA BRADE KORA

Maximal Lipschitz viscosity subsolution VS Monge solution

$$
\Omega = [-1, 1] \times [0, 2], \quad E = [-1, 1] \times \{0\}
$$

$$
c(x) = \begin{cases} 1 & \text{if } x = 0 \\ 2 & \text{else} \end{cases}
$$

Maximal Lipschitz subsolution

$$
u_1(x,y)=2y
$$

Monge solution

K ロ X K 레 X K 회 X X 회 X 및 X X X X X 전

Closest existing result:

A. Festa and M. Falcone. "An Approximation Scheme for an Eikonal Equation with Discontinuous Coefficient", SIAM J. Numer. Anal., 52(1) (2014): 236-257

Convergence of a numerical scheme (following the semi-lagrangian approach) under the cone assumption on c :

 $\forall \eta > 0, K > 0, \forall \mathsf{x} \in \Omega, \exists \mathsf{n}_{\mathsf{x}} \in \mathcal{S}^1, \forall \mathsf{y} \in B(\mathsf{x},\eta), \forall \mathsf{r} > 0, \forall \mathsf{d} \in \mathsf{C}$ \mathcal{S}^1 s.t. $|d - n_x| < \eta, y + rd \in \Omega$,

$$
c(y+rd)-c(y)\leq Kr.
$$

Under this assumption, the Ishii solution u is unique and the numerical scheme converges to u . However, in the previous example, both the Lipschitz and the Monge solution are Ishii solutions.

 L_{The} numerical scheme

We want to approximate the Monge solution of the Eikonal equation on a triangular mesh $M_{\Delta} := (\mathcal{T}_n)_{1 \leq n \leq N}$.

K ロ ⊁ K 個 ▶ K ミ ▶ K ミ ▶ │ ミ

 299

[A numerical scheme for the discontinuous Eikonal equation](#page-0-0)

 $-$ [The numerical scheme](#page-18-0)

We discretize the source term:

$$
\forall n \in [1, N], c_n := \inf_{x \in \mathcal{T}_n} c(x),
$$

$$
c_{\Delta}(x) := \sum_n \mathbb{1}_{\mathcal{T}_n}(x) c_n.
$$
 (6)

The fast marching principle and the narrow band depth

K ロ X K 레 X K 회 X X 회 X 및 X X X X X 전

The computations inside a triangle. In the following, we denote $T_n = ABC$ and $V_{A,B,C}$ stands for $u_{\Delta}(A, B, C)$. We define:

$$
\Phi_{ABC}^{V_A,V_B,V_C}: \begin{cases}\n\overrightarrow{R^2} \longrightarrow \mathbb{R} \\
\overrightarrow{AB} + \overrightarrow{yAC} \longrightarrow V_A + (V_B - V_A)x + (V_C - V_A)y.\n\end{cases}
$$
\nThen the gradient of $\Phi_{ABC}^{V_A,V_B,V_C}$ is constant on \mathbb{R}^2 . Consequently,
\nwe define:

$$
\mathcal{H}_{ABC}(V_A,V_B,V_C)=||\nabla \Phi_{ABC}^{V_A,V_B,V_C}||.
$$

For any triangle T_k with two validated points B and C with $V_B < V_C$, we set $V_A^k =$

$$
\begin{cases}\n V_B - \frac{AB \cdot \vec{BC}(V_C - V_B)}{BC^2} + \frac{|\det(\vec{AB}, \vec{BC})| \sqrt{c_{\Delta}^2 BC^2 - (V_B - V_C)^2}}{BC^2} & \text{if } c_{\Delta} |BC| > |V_B - V_C| \\
 V_C + c_{\Delta} AC & \text{else}\n\end{cases}
$$

 -990

重

 4 ロ) 4 何) 4 ヨ) 4 コ)

 $\overline{}$ [The numerical scheme](#page-18-0)

If instead we compute :

$$
\tilde{V}^k_A:=\inf_{\gamma\;\in\; W^{1,\infty}((0,\;T))}\int_0^{\;T}c_\Delta |\dot{\gamma}(t)|\,\mathrm{d} t+\mathsf{U}_{BC}(\gamma(T)).
$$
\n
$$
\gamma(0)=A
$$
\n
$$
\gamma(T)\in [BC]
$$

We obtain
$$
\tilde{V}_A^k
$$
 =
\n
$$
\begin{cases}\nV_B + c_\Delta |AB| & \text{if } c_\Delta \frac{\vec{AB} \cdot \vec{BC}}{AB} + V_C - V_B > 0 \\
V_C + c_\Delta |AC| & \text{if } c_\Delta \frac{\vec{AC} \cdot \vec{BC}}{AC} + V_C - V_B < 0 \\
V_B - \frac{\vec{AB} \cdot \vec{BC}(V_C - V_B)}{BC^2} + \frac{|\det(\vec{AB}, \vec{BC})| \sqrt{c_\Delta^2 BC^2 - (V_B - V_C)^2}}{BC^2} & \text{else} \\
\textbf{A choice: do we use the constrained gradient or not ?} \n\end{cases}
$$

KID KORK KERKER E KORCH

The issue with obtuse triangles

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ | 할 | X 9 Q Q

 \Box [The numerical scheme](#page-18-0)

Let P be the point phrozen at the step n . We set

$$
u_{\Delta}(P)=\min_{P\in\mathcal{T}_k}V_A^k.
$$

Good properties

- **■** (*Monotonicity*) If $c_∆ \leq \tilde{c}^>$ then $u_∆ \leq \tilde{u}^>$.
- (Compactness) $||\nabla u_\wedge|| < \overline{c}$.
- (*Partial consistency*) Let $\phi \in \mathcal{C}^1(\Omega)$. Then

lim sup $\limsup_{y\to x, y\in ABC} [\mathcal{H}_{ABC}(\phi(A), \phi(B), \phi(C)) - c_{\Delta}(y)] \le ||\nabla \phi(x)|| - c(x).$ (8)

KORKA SERKER STRACK

Comparison of the numerical approximations with different options

K ロ ▶ K 個 ▶ K 할 > K 할 > 1 할 > 1 이익어

Narrow band depth 1, unconstrained gradient

Narrow band depth 2, unconstrained gradient

モニー・モン イヨン イヨー 299

Narrow band depth 1, constrained gradient

Narrow band depth 2, constrained gradient

イロメ 不倒 メイミメ 不重 メーミ

 299

Narrow band depth 1, unconstrained gradient

Narrow band depth 2, unconstrained gradient

イロト イ部ト イ君ト イ君ト

 $2Q$

Narrow band depth 1, unconstrained gradient

Narrow band depth 2, constrained gradient

 4 ロ) 4 \overline{r}) 4 \overline{z}) 4 \overline{z})

 \equiv

 299

Thanks for your attention.

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ | 할 | X 9 Q Q